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Abstract— MAX-MIN Ant System (MMAS) is an ant colony
optimization (ACO) algorithm that was originally designed
to start with a very explorative search phase and then to
make a slow transition to an intensive exploitation of the
best solutions found during the search. This design leads to
a rather slow initial convergence of the algorithm, and, hence,
to poor results if the algorithm does not run for sufficient time.
This article illustrates that varying the parameter settings of
MMAS while solving an instance may significantly improve
the anytime search behavior of MMAS. Even rather simple
pre-scheduled variations of the parameter settings that only
depend on the number of iterations or the computation time
show improvement over fixed parameter settings. The degree
of improvement, however, is not uniform across problems. In
particular, the improvement is very strong in the traveling
salesman problem (TSP) but small, if at all noticeable, in the
quadratic assignment problem (QAP). This paper also presents
an adaptive parameter variation specifically designed for the
TSP. The experimental results show that the pre-scheduled
variations are comparable to the proposed adaptive variation
in terms of the anytime behavior of MMAS.

I. INTRODUCTION

Ant colony optimization (ACO) is a metaheuristic inspired
by the swarm behavior of some species of ants [1]. Among
the most performing ACO algorithms are variants such as ant
colony system (ACS) [2], MAX-MIN ant system (MMAS)
[3], [4], and rank-based ant system [5].

Although it is now known that effective ACO algorithms
typically include local search to improve the solutions gener-
ated by the ants [1], [2], [3], [6], early comparisons of ACO
algorithms applied to the TSP focused on variants without
local search. Moreover, comparisons were done for rather
long runs, typically up to 10 000 · n solution constructions.
The reason for such long runs is probably the influence
of the first international contest on evolutionary optimiza-
tion [7], which used this stopping criterion for symmetric
TSP instances. When comparing ACO algorithms using this
stopping criterion, MMAS emerges as a top performing
contender [4]. This is maybe not surprising because MMAS
was targeted to be an effective ACO algorithm for rather high
computation times (or, equivalently, a rather large number
of solution constructions). MMAS was designed to have a
relatively long initial exploration phase with a subsequent
transition to a strong exploitation phase. With these default
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settings [4], MMAS reaches very good results (when com-
pared to other ACO algorithms) on TSP instances of few
hundred cities. A main drawback of these design choices is,
however, that MMAS has a slow convergence towards high
quality solutions. Convergence is faster in MMAS variants
that exploit local search, mainly because such variants use a
smaller number of ants and a higher pheromone evaporation
rate. Nevertheless, even with local search, MMAS still has
a slower convergence to high-quality solutions than more
aggressive ACO algorithms such as ACS.

In this article, we examine possibilities for improving the
convergence speed of MMAS towards high quality solutions
(or said in other words, the anytime behavior [8] of MMAS)
by using schemes for the adaptation of parameter values at
computation time. While the study of online parameter varia-
tion has mostly focused on evolutionary algorithms (EAs) [9]
and reactive search approaches [10], there are only few works
studying online parameter variations in ACO algorithms.
A recent comprehensive review of such approaches [11]
concludes that most of these works propose rather complex
adaptive strategies, without a clear understanding of the
effect of different settings during a single run of an ACO
algorithm. In contrast, in our research efforts we have first
studied the impact of various non-default parameter settings
on the convergence speed. Interestingly, modified parameter
settings can strongly improve upon the default ones for short
run times, but they often have a detrimental effect for longer
runs. Based on these insights, we first investigate simple pre-
scheduled variations of parameter settings, where the value
of a parameter depends only on the current time or iteration.
Our experimental results show considerable improvements
to the anytime behavior of MMAS with and without local
search when applied to the TSP. We further test whether these
performance improvements carry over to other application
problems, where local search plays a very dominant role,
using the quadratic assignment problem (QAP) as a case
study. Pre-scheduled parameter variation can improve over
the default settings for the MMAS application to the QAP
[12], [4]; however, this is the case mainly because these
parameter settings left room for improvement and fixed
parameter settings with a better anytime performance exist.
Finally, we compare the pre-scheduled parameter variations
with an adaptive parameter strategy specifically designed for
the TSP. This adaptive strategy modifies parameter settings
depending on the distance between solutions. Our exper-
iments show that the adaptive strategy effectively adapts
parameter values towards very good settings at each stage of
the search. Nonetheless, the comparison between the adaptive
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and the fine-tuned, pre-scheduled strategy shows that the
latter is able to match the performance of the former.

The paper is structured as follows. In the next section,
we give a short overview of MMAS. In Section III, we
examine the performance of parameter schedules. Section IV
discusses the results for MMAS applied to the QAP. Sec-
tion V introduces a parameter adaptation strategy designed
specifically for the TSP, and compares it with one of the
previous pre-scheduled variation strategies. We conclude in
Section VI.

II. MAX-MIN ANT SYSTEM

MMAS is an ACO algorithm that builds directly upon
AS, incorporating a much more aggressive pheromone update
procedure and mechanisms to avoid search stagnation. When
applying MMAS to the TSP, each ant starts at a randomly
chosen initial city, and constructs a tour by randomly choos-
ing at each step the city to visit next according to a proba-
bility defined by pheromone trails and heuristic information.
In particular, the probability of ant k choosing a successor
city j when being at city i is given by

pij =
[τij ]

α · [ηij ]
β∑

h∈Nk

[τih]α · [ηih]β
, (1)

where τij is the pheromone trail strength associated to edge
(i, j), ηij is the corresponding heuristic information; α and
β are two parameters that influence the weight given to
pheromone and heuristic information, respectively; and Nk

is the feasible neighborhood, that is, a candidate list of cities
not yet visited in the partial tour of ant k.

Departing from the traditional MMAS but following previ-
ous work [12], [13], we also incorporate the pseudo-random
action choice rule of ACS [2], which allows for a greedier
solution construction. With a probability q0 an ant chooses
next a city j such that

j = arg max
h∈Nk

{[τih]α · [ηih]β} ; (2)

otherwise, the ant performs the probabilistic selection based
on Eq. 1. A value of q0 = 0 disables the pseudo-random
action choice rule and reverts back to the traditional MMAS.

The pheromone update of MMAS updates all pheromone
trails as

τij ← max
{
τmin, min{τmax, (1− ρ) · τij + ∆τ best

ij }
}
, (3)

where ρ, 0 < ρ ≤ 1, is a parameter called evaporation rate
and

∆τ best
ij =

F (sbest) if edge (i, j) ∈ sbest,

0 otherwise.
(4)

The best solution (sbest) is either the iteration-best so-
lution, the best-so-far solution or the best solution since
a re-initialization of the pheromone trails (restart-best). In
MMAS, these solutions are chosen alternately [4].

There are essentially three mechanisms for search diversi-
fication in MMAS. First, the explicit pheromone trail limits

(τmax and τmin) play the main role by guaranteeing that there
is a minimum probability of selecting any feasible choice.
Second, the initialization of the pheromone trails to τmax,
together with a relatively small evaporation rate, produces a
small variability among the pheromone levels at the start
of the search, and, hence, the sampling of the space is
rather uniform. Later in the search, once the pheromone
trails converge to reflect the best found solutions, MMAS
goes into an exploitation phase. Finally, pheromone trails
are occasionally re-initialized to τmax if the algorithm has not
improved the best-so-far solution in a number of iterations.

The application of MMAS to the quadratic assignment
problem (QAP) [4] is similar to the application to the TSP.
The main differences are that MMAS for the QAP does
not use any heuristic information and that the pheromone
information represents the assignment of an object to a
location. More details about the application of MMAS to
the QAP can be found in the original publication [4].

In the next sections, we report experimental results of
MMAS for both the TSP and QAP with different fixed
settings and various pre-scheduled parameter variations. The
experiments are run on a cluster of Intel XeonTM E5410
quad-core processors with 2.33 GHz CPUs with 6 MB L2-
Cache and 8 GB RAM under Rocks Cluster GNU/Linux.
Due to the sequential implementation of the code, only one
core is used for running the executable. The algorithms are
compiled with gcc, version 3.4. Results for the TSP are
generated with the publicly available ACOTSP software [14].
The implementation of MMAS for the QAP follows the
original proposal [4].

III. PRE-SCHEDULED PARAMETER VARIATIONS
FOR THE TSP

We report in this section the result of pre-scheduled
variations of the number of ants (m) and the greediness factor
(q0, Eq. 2) for the application of MMAS to the TSP. For
reasons of limited space, we do not report here results of pre-
scheduled variations of the influence of heuristic information
(β), although initial experiments suggest that pre-scheduled
variation of β further improves the anytime behavior of
MMAS [11]. On the other hand, we could not find any pre-
scheduled variation of the evaporation factor (ρ) that would
significantly enhance the anytime behavior of MMAS over
fixed parameter settings.

We confirmed our results in four random Euclidean in-
stances for each size of 100, 200, 300 and 400 cities (MMAS
without local search), and 1 500, 3 000 and 6 000 cities
(MMAS+ls). Here, we only show results for an instance of
size 400 and another one of size 3 000, but the results are
representative of those obtained on other instances. Each plot
shows the results on a single instance. The x-axis shows the
computation time in seconds in logarithmic scale, whereas
the y-axis gives the relative deviation from the optimum.
Each line is the mean quality of the best-so-far solution
over 25 independent runs with different random seeds. To
assess the variability among different runs, we plot a 95%
confidence interval around each mean value as a gray shadow
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Fig. 1. Comparison of fixed and pre-scheduled variation of parameter
m for MMAS (top) and MMAS+ls (bottom). The pre-scheduled parameter
variation (sm) starts at m = 1, adding one ant every ten iterations.

behind each line. The variability is very small in the case
of the TSP, and therefore the confidence intervals are not
visible in many plots (c.f. Fig. 1). In the case of the QAP,
the variability is much higher and the confidence intervals
are clearly visible (c.f. Fig. 4).

We first examine pre-scheduled variations of the number
of ants (m). We propose a simple schedule that starts with a
single ant (m = 1) and slowly increases the number of ants at
a rate of one ant every 10 iterations. We compare in Fig. 1,
for both, MMAS and MMAS+ls, this parameter schedule
(sm) and several fixed settings: a single ant (m = 1), and
the default setting (m = n for MMAS, and m = 25 for
MMAS+ls) [1]. In both cases, the pre-scheduled variation
(sm) obtains very good results for short runtimes, similar to
those obtained with a single ant. In addition, it matches the
final performance of the default settings for longer runtimes.
We observed the same results across all the instances tested
in this study. A single ant quickly converges to good solutions
by performing many more iterations in a same time. On the
other hand, a larger number of ants sample more effectively
around the best solution without incurring the overhead of
updating the pheromone information at every iteration.

Next, we consider pre-scheduled variations of the param-
eter q0. In this case, we propose a schedule (sq0) that starts
with a high value of q0 = 0.99 and decreases q0 at a
rate of 0.001 every two iterations until reaching q0 = 0,
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Fig. 2. Comparison of fixed and pre-scheduled variation of parameter
q0 in MMAS (top) and MMAS+ls (bottom). The pre-scheduled parameter
variation (sq0) starts at q0 = 0.99 and decreases by 0.001 every 2 iterations
until q0 = 0.

disabling the greedy choice and reverting to the traditional
MMAS. Figure 2 illustrates, for both MMAS and MMAS+ls,
the comparison between the pre-scheduled variation (sq0)
and fixed settings of q0 = 0 (the default for MMAS) and
q0 = 0.99. The conclusions from this and similar plots
for other instances is that the pre-scheduled variation sq0

is able to match the best performance of both fixed settings,
providing a superior result if the runtime is not known in
advance, and, therefore, improving the anytime behavior of
MMAS. Our explanation of the success of the pre-scheduled
variation is that higher settings of q0 focus the search around
the best-so-far solution, speeding up the convergence of the
algorithm and quickly obtaining good results. However, if
there is enough computation time available, lower settings
of q0 are necessary to increase exploration.

Finally, we also tested the combination of pre-scheduled
variations of both parameters m and q0. However, there is a
strong interaction between these two parameters, and varying
both at the same time does not lead to a strong improvement.
We use Fig. 3 to illustrate the general observations. First,
we notice that varying only q0 produces much better results
than varying only m, especially in MMAS+ls and for short
runtimes. In the case without local search, varying both
parameters (sm, sq0) almost matches the performance of only
sq0 for short runtimes, whereas it matches the performance of
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Fig. 3. Pre-scheduled variation of both parameters m and q0 in MMAS
(top) and MMAS+ls (bottom). The variation schemes are the same used in
Figs. 1 and 2.

only sm for the remainder of the run, effectively combining
the best behaviors of both approaches. The overall conclusion
is that it is more important to vary q0 than m when using
local search, whereas without local search there are some
advantages to the combined pre-scheduled variation of both
parameters.

IV. PRE-SCHEDULED PARAMETER VARIATIONS
FOR THE QAP

As the next step, we analyzed the behavior of pre-
scheduled parameter variations on the effectiveness of
MMAS for the QAP. As above, we consider schedules
varying the number of ants m and the parameter q0. Given
that the performance of ACO algorithms for the QAP is
very poor without local search, we directly focus on the
MMAS algorithm with local search (henceforth, denoted
simply by MMASQAP). The local search algorithm is a
best-improvement algorithm that stops upon hitting a lo-
cal optimum with respect to the 2-exchange neighborhood,
where the 2-exchange neighborhood exchanges the location
of two objects. In the QAP case, we have compared two
pre-scheduled parameter variations, a fast and a slow one, of
each parameter. In the fast schedule of q0 (fast sq0), the initial
value of 0.8 is decreased by 0.05 every 4 iterations until a
final value of q0 = 0, whereas the fast schedule of m (fast
sm) starts with one ant and adds an additional ant every 4

iterations until a maximum of 15 ants. In the slow parameter
schedules (slow sq0 and slow sm), the initial parameter values
(q0 = 0.8 and m = 1) are kept constant during 15 iterations;
after 15 iterations, slow sq0 decreases the value of q0 by 0.05
every 5 iterations until reaching a value of 0.3, whereas slow
sm adds one ant every 5 iterations until reaching seven ants.

We test these pre-scheduled variations and various fixed
parameter settings on several benchmark instances from
QAPLIB. Plots in this section are similar than those for
the TSP, and in particular, each line is the mean quality of
the best-so-far solution over 20 independent runs, and we
plot behind each line a 95% confidence interval around the
mean value. We give exemplary plots comparing the slow
and fast schedules to fixed parameter settings in Figures 4
and 5, for m and q0, respectively. The general observation is
that for the number of ants the slow schedule is preferable,
whereas for q0 the differences between the fast and the slow
schedules are not fully clear. In a few instances, the pre-
scheduled variations improved performance over the default
fixed parameter settings for short running times. However,
we found in most instances better fixed settings than the
default ones, and, in many cases, the confidence intervals of
the various settings overlap.

We check also the results if both parameters are varied
concurrently, using at the same time a fast schedule for q0

and a slow one for m. We illustrate the results in Figure 6.
Although the combined schedule reaches better solution
quality for very short computation time, we cannot claim
that the combined schedule provides any clear improvement.

V. AN ADAPTIVE MAX-MIN ANT SYSTEM VARIANT:
MMASDDE

In this section, we compare the pre-scheduled parameter
variation of q0 to an adaptive scheme for modifying the
same parameter in the application of MMAS+ls to the TSP.
Adaptive strategies try to use the information that is gained
at computation time during the search to adapt the values
of parameters, and they are therefore very different from
pre-scheduled parameter variations. The results presented in
this section were obtained without the usual pheromone re-
initialization of MMAS. However, some preliminary exper-
iments suggest that the method is quite robust and future
extensions of this work should contrast these results with
the standard pheromone reinitialization of MMAS.

We propose a new adaptive strategy that we call MAX-MIN
Ant System with distance dependent elitism (MMASdde). The
idea of this adaptive strategy is based on the observation that
the best solutions during a run of MMAS+ls are typically
generated when the average distance among the tours is
a small constant. In other words, the algorithm seems to
perform best when there is an optimal degree of hetero-
geneity among the solutions generated. Here we measure
the heterogeneity between two tours by their distance in
the solutions space; in particular, we use the bond distance,
which is given by the number of cities n minus the number
of common edges.
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Fig. 4. Comparison of fixed and pre-scheduled variation of parameter
m in MMASQAP. Results are for instance tai100a (top) and instance
tai150b (bottom) from QAPLIB.

As a first step, we determine appropriate distance values.
In particular, we run the default variant of MMAS+ls and
compute the average distance among tours when the al-
gorithm converges, which is also the point when the best
solutions are found. We measure this value for various
instance sizes and compute a linear regression. The results
of the linear regression are given in Table I. According to
the linear regression, the average distance of the reference
configuration, thereafter called the target distance dtarget

avg , can
be derived as:

dtarget
avg = 12.8243575 + 0.00390003 · n (5)

Preliminary results indicate that MMASdde is not ex-
tremely sensitive with respect to the actual target distance.
Here, we use the value predicted by the linear regression as
the target distance for any of the instances we test.

Taking into account the information above, we propose an
adaptive strategy (aq0), where the value of q0 is increased or
decreased depending on the average distance among tours in
the current iteration. The rule of thumb we use is based on
the intuition that increasing q0 should lead to a decrease of
the average distance, while the decrease of q0 should lead to
an increase of the average distances. This effect is because
q0 determines the greediness of solution construction: high
values of q0 favor the selection of a small group of the best-
performing edges, leading to the construction of relatively

1 2 5 10 20 50 100 200

0.
00

0
0.

01
0

0.
02

0

time in seconds

re
la

tiv
e 

de
vi

at
io

n 
fr

om
 b

es
t−

kn
ow

n

q0 0.0
q0 0.4
q0 0.8
fast  sq0

slow  sq0

1 5 10 50 100 500
0.

00
0

0.
01

0
0.

02
0

0.
03

0

time in seconds

re
la

tiv
e 

de
vi

at
io

n 
fr

om
 b

es
t−

kn
ow

n

q0 0.0
q0 0.4
q0 0.8
fast  sq0

slow  sq0

Fig. 5. Comparison of fixed and pre-scheduled variation of parameter
q0 in MMASQAP. Results are for instance tai100a (top) and instance
tai150b (bottom) from QAPLIB.

TABLE I
AVERAGE SOLUTION DISTANCE AT THE END OF THE RUN, USING THE

MMAS REFERENCE CONFIGURATION ON DIFFERENT PROBLEM SIZES:
EXPERIMENTAL RESULTS AND LINEAR REGRESSION

instance average considered distance predicted regression
distance iterations by linear regression residual

1000-1 15.62 45,001-50,000 16.72 -1.10
1500-1 17.10 23,001-28,000 18.67 -1.57
2000-1 22.89 13,001-18,000 20.62 2.27
2500-1 22.14 8,001-12,000 22.57 -0.43
3000-1 26.34 7,501-10,000 24.52 1.82
3500-1 25.74 5,501-8,000 26.47 -0.73
4000-1 27.67 4,751-6,000 28.42 -0.75
4500-1 32.35 4,501-5,500 30.37 1.98
6000-1 34.77 35,001-40,000 36.22 -1.45

similar solutions, while low values of q0 increase the chances
of less visited edges becoming part of a tour, and, hence,
lead to higher average distance. This rule of thumb is used
to modify the value of q0 throughout a run, trying to keep the
average distance among solutions close to a target distance.

For a precise definition of the adaptive parameter scheme,
we need to consider three aspects: (1) the degree of mod-
ification of the parameter value, (2) the initial parame-
ter value, and (3) the frequency of modification. Standard
possibilities to modify the parameter value are either to
add/remove a constant amount or to multiply/divide by a
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Fig. 6. Pre-scheduled variation of both parameters m and q0 in
MMASQAP. Results are for instance tai100a (top) and instance
sko100a (bottom) from QAPLIB.

constant factor. We consider here a different approach that
uses a finite ordered set of possible values of q0, and
modifications of q0 change the current value by replacing
it with the next larger (or smaller) value in the set. We
examined several possible sets of values in some prelimi-
nary experiments, however, we did not find strong differ-
ences among them, so we arbitrarily choose the following:
q0 ∈ {0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99, 1.0}.
For the initialization of q0, we explored two possibilities.
Either we start at the highest possible value if the set, which
is identified as aq0+, or at the lowest possible value, iden-
tified as aq0−. While aq0+ is more appropriate, considering
the results in Section III, the use of aq0− demonstrates the
ability of the adaptive strategy to cope with a suboptimal
initialization. Finally, we have to establish the frequency of
adaptation of q0. As the computation of the average solution
distance is somewhat computationally expensive (O(m2n)),
there is a trade-off between frequent changes, which are
expensive but keep the average distance close to the target
level, and slower changes, which are faster but may deviate
from the target level. We examine two possible values for
the frequency of adaptation: every iteration and every 10
iterations.

Figure 7 illustrates the effect of each combination between
initialization with four different adaptive approaches aq0+
and aq0−, and a frequency of adaptation of 1 and 10

iterations. The two upper plots (Figs. 7(a) and 7(b)) show
the evolution of the value of q0 with respect to the number
of iterations. Both plots show that the adaptive strategy that
starts with a low value of q0 (aq0−) quickly converges to
a similar curve as the adaptive variant that starts with a
high value of q0. As for the frequency of adaptation, a high
frequency (every iteration) allows aq0− to match faster the
settings of aq0+. However, there are not strong difference
between the two frequencies of adaptation in the case of
aq0+. The two bottom plots (Figs. 7(c) and 7(d)) show the
evolution of the average distance. Here, the faster frequency
of adaptation produces a smoother curve, however, both
settings quickly reach the target distance. Therefore, we focus
on the results obtained when the adaptation frequency is
10 iterations for a comparison of the performance of the
two adaptive strategies, aq0+ and aq0−, the pre-scheduled
variation sq0 (Section III), and two fixed values q0 = 0 and
q0 = 0.99. Figure 8 illustrates this comparison for two TSP
instances of size 1 500 and 6 000. The adaptive parameter
variation that starts with a low value of q0 (aq0−) performs
worse than the other parameter variations at the start of the
algorithm. However, its performance is never worse, and
it is at some times better, than that of the default value
(q0 = 0). In both instances, the best anytime behavior is
obtained by the adaptive aq0+ approach and pre-scheduled
parameter variations (sq0). These two strategies have similar
anytime behavior, both of them being clearly superior to fixed
settings of q0. The fact that the pre-scheduled variation of
q0 matches the performance of the adaptive variant, suggests
that the evolution of the algorithm is smooth in the sense that
the optimal adaptation of q0 can be approximated fairly well
with a pre-scheduled variation. This result is also indicated
by the smoothness of the curves in the top plots of Fig. 7.

VI. CONCLUSIONS

In this article, we have examined the impact pre-scheduled
parameter variation can have on the anytime behavior of
MMAS. In the application of MMAS to the TSP, pre-
scheduled variations of some parameters allow us to obtain a
much improved anytime performance when compared to the
default MMAS settings. The improvements are particularly
impressive when not using local search and for short compu-
tation time. Nonetheless, the performance improvement was
also quite strong in the case of MMAS+ls. Most interestingly,
by rather simple schedules, one could interpolate smoothly
between parameter settings of MMAS that result in good
solutions quality for short computation times and those that
reach high solution quality for high computation times.
Hence, for comparisons to MMAS in TSP applications, we
strongly recommend in the future the usage of such pre-
scheduled parameter variations.

The positive impact of the parameter schedules was less
clear in the case of MMAS with local search for the QAP. For
many large QAPLIB instances, the pre-scheduled parameter
variations did not improve upon optimal fixed parameter
settings. One reason may be that local search plays a very
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(a) development of q0, update every 10 iteration.
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(c) distance plot, update every 10 iteration.

1 10 100 1000 10000

10
20

50
10

0
20

0
50

0

iterations

av
er

ag
e 

di
st

an
ce

aq0
 +

aq0
 −

(d) distance plot, update every iteration.

Fig. 7. Effect of q0 starting value when using a distance-based adaptive method to set q0 in MMAS, instance 1500-1, 2-opt

dominant role in the QAP, hiding to a certain extent the effect
of parameter variations of the MMAS algorithm.

In the case of the TSP, we also compared the pre-scheduled
parameter variations with an informed, adaptive strategy.
The adaptive strategy proved to be very effective at finding
very good parameter settings during the run. However, such
settings may also be reproduced with an appropriate pre-
scheduled parameter variation. Hence, the comparison of
both strategies does not show a clear advantage of either
strategy. Of course, this might not be the case in problems
where good parameter settings do not vary smoothly during
the run, or when such fine-tuned pre-scheduled variations
cannot be found.

Our study has focused on the parameters m, the number
of ants in the ant colony, and q0, a parameter that determines
the greediness of the pseudo-random proportional action
choice rule. Pre-scheduling these parameters was shown to
be very effective. Combining the pre-scheduled variations
of m and q0 did not result in strong further improvements.
Initial results indicate that schedules for other parameter
such as β or α can also result in improved anytime behav-
ior [11]. Whether combinations of pre-scheduled parameter
variations of these parameters or more than two parameters
may result in further performance improvements, is still an
open question. A number of other research directions are

also worth exploring. First, the parameter variation strategies
proposed here have their own parameters, and the robustness
of the strategies with respect to these parameters needs to
be further assessed. Another interesting aspect is to explore
the impact of the heterogeneity of the instances to be tackled
on the relative performance of pre-scheduled parameter vari-
ations versus adaptive ones. Intuitively, adaptive parameter
variations should be more advantageous than pre-scheduled
parameter variations for heterogeneous and dynamic problem
instances; however, for homogeneous and static instances,
and when the main goal is to improve an algorithm’s anytime
behavior, pre-scheduled parameter variation appears to be
sufficiently good.
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Fig. 8. Comparison of fixed, pre-scheduled and adaptive parameter settings
of MMAS+ls.
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[13] T. Stützle and H. H. Hoos, “MAX-MIN Ant System and local
search for combinatorial optimization problems,” in Meta-Heuristics:
Advances and Trends in Local Search Paradigms for Optimization,
S. Voss, S. Martello, I. Osman, and C. Roucairol, Eds. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 137–154.
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